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A posteriori error estimates for high order Godunov finite volume methods
are presented which exploit the two solution representations inherent in the
method, viz. as piecewise constants u0 and cellwise p-th order reconstructed
functions R0

pu0. Using standard duality arguments, we construct exact error
representation formulas for derived functionals that are tailored to the class of
high order Godunov finite volume methods with data reconstruction, R0

pu0. We
then devise computable error estimates that exploit the structure of Godunov
finite volume methods. The present theory applies directly to a wide range of
finite volume methods in current use including MUSCL, TVD, UNO, and ENO
methods. Issues such as the treatment of nonlinearity and post-processing of
dual (adjoint) problem data are discussed. Numerical results for linear advec-
tion and nonlinear scalar conservation laws at steady-state are presented to
validate the analysis.
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1. Introduction

A frequent objective in numerically solving partial differential equations is
the subsequent calculation of certain derived quantities of particular interest,
e.g., aerodynamic lift and drag coefficients, stress intensity factors, mean tem-
peratures, etc. Consequently, there is considerable interest in constructing a
posteriori error estimates for such derived quantities (mathematically described
as functionals) so as to improve the reliability and efficiency of numerical com-
putations. For an introduction to a posteriori error analysis see the articles
by Becker and Rannacher [BEC 98], Eriksson et al. [ERI 95], Giles et al.
[GIL 97, GIL 99], Johnson et al. [JOH 95], Parashivoiu et al. [PER 97], Prud-
homme and Oden [ODE 99, PRU 99], Süli [Sul 98], and the collected NATO
lecture notes [BAR 02].

This article revisits the topic of a posteriori error estimation of user pre-
scribed functionals with specific consideration given to finite volume methods
that are extensions of Godunov’s original method [GOD 59] to high order accu-
racy via various forms of data reconstruction, e.g. MUSCL in [LEE 79], TVD
in [HAR 83], UNO in [HAR 87], ENO in [HAR 89, SHU 88] with faithful gen-
eralizations of Godunov’s method to unstructured meshes given in [BAR 89,
BAR 90, DUR 90, BAR 98, ABG 94, VAN 93]. These methods can be viewed
abstractly in the following operator composition form for a first-order conser-
vation law in d space dimensions and time

un+1
0 = A · E(τ) ·R0

p(·)un0 (1)

where un0 are the piecewise constant cell-averages of the conservation law solu-
tion u(x, t) at time tn, R0

p(x) is a reconstruction operator which produces a cell-
wise discontinuous p-th order polynomial approximation of the solution given
cell-averages, E(t) is the evolution operator for the PDE (including boundary
conditions), and A is the cell-averaging operator such that A|K performs cell-
averaging for each partition element K in the mesh K. Since A is a positive
operator and E(τ) represents exact evolution in the small, the control of so-
lution oscillations and Gibbs-like phenomena is linked directly to oscillation
properties of the reconstruction operator, R0

p(x). The requirements of high
order accuracy for smooth solutions and discrete conservation give rise to the
following additional design criterion for the reconstruction operator (see Harten
[HAR 87, HAR 89])

•R(x)u0 = u(x) +O(hp+1) whenever u is smooth (2)

•A|KR(x)u0 = u0|K , ∀K ∈ K to insure discrete conservation (3)

A rather large body of literature exists devoted to the intricate design and
analysis of various non-oscillatory reconstruction operators for Godunov finite
volume methods. Perhaps surprisingly, we will show that an exact error rep-
resentation formula and simple a posteriori error estimation theory can be
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developed without knowing the precise details of a particular reconstruction
operator beyond the requirements of Eqns. (2) and (3). This task is under-
taken in the remainder of this article.

In developing the present a posteriori error estimation theory for finite vol-
ume methods, we will utilize the notion of a mesh dependent broken space VB

p

consisting of discontinuous piecewise polynomials of at most degree p in each
partition element. Using this space, we consider the Discontinuous Galerkin
(DG) finite element method introduced by Reed and Hill [REE 73] as ana-
lyzed by Johnson and Pitkäranta [JOH 86] and further refined for nonlinear
conservation laws by Cockburn et al. [COC 89, COC 97]:

DG FEM. Find up ∈ VB
p such that

BDG(up, v) = F (v), ∀v ∈ VB
p (4)

where BDG(·, ·) denotes an abstract variational form corresponding to a weak
integrated-by-parts form of the conservation law and F (v) a functional possibly
including boundary conditions and any external forcing terms. Precise forms of
these operators will be given later. It is well-known that in the case p = 0, the
DG method reduces to the lowest order accurate Godunov method. As will be
shown later, the underpinning of our error estimation theory comes from the
simple observation that the higher order Godunov methods can be expressed
as a Petrov-Galerkin variant of the basic DG method:

Higher Order Godunov FVM. Find u0 ∈ VB
0 such that

BDG(R0
pu0, v) = F (v), ∀v ∈ VB

0 , R0
p : VB

0 7→ VB
p . (5)

Here R0
p represents the same reconstruction operator described in previous

paragraphs which maps one broken space into another. Using these construc-
tions, we will show that the a posteriori error estimation theory previously
developed for the DG method can be modified for use in higher order Godunov
methods with a modicum of effort by appealing directly to the Petrov-Galerkin
form given in Eqn. (5).
Remark. — Note that we will not attempt an a priori analysis of the Petrov-
Galerkin form (5). Such an analysis would depend critically on the precise
form of reconstruction operator used. In addition, a priori theories (stabil-
ity, accuracy, convergence) for higher order Godunov finite volume methods
are typically carried out in more convenient non-energy norms, see Harten
[HAR 83, HAR 87, HAR 89] and Kröner et al. [KRO 95, KRO 96]. We once
again emphasize that unlike the a priori theory, an a posteriori error estima-
tion theory based on Eqn. (5) can be performed without knowing the precise
details of the particular reconstruction operator. Thus we are able to obtain a
simple error estimation theory with a wide range of direct applicability.
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Remark. — Finally, we remark that although we include time dependent terms
in portions of the presentation, in our final analysis as well as calculated nu-
merical results, we consider only error estimates for steady-state solutions.

2. Higher Order Godunov Finite Volume Methods in
Petrov-Galerkin Form

Let Ω be a domain in Rd and K a partition of Ω into shape regular partition
elements or control volumes, K. Further let VB be the mesh dependent broken
space of discontinuous piecewise Hs functions defined on K, i.e.,

VB = {v : v|K ∈ Hs(K)} . (6)

Similarly, we introduce the finite dimensional spaces VB
p consisting of discon-

tinuous piecewise polynomial functions of degree p defined on the partition
K

VB
p = {v : v|K ∈ Pp(K)} (7)

with Pp(K) the space of polynomials of degree ≤ p defined on element K.

Next consider the following prototype scalar nonlinear conservation law in
a domain Ω with boundary Γ with solution u(x, t) : Ω×R 7→ R and flux vector
~f(u) : R 7→ Rd

u,t + div ~f(u) = 0, in Ω× [0, T ]
u(x, 0) = u0(x), in Ω

a−(n;u)(g − u) = 0, on Γ with a(n;u) ≡ f,u · n .

Let In denote the time slab increment, In ≡ [tn, tn+1], with [0, T ] = ∪n=0,N−1In.
In addition, let K and K ′ denote two partition elements adjacent to an edge
e so that u±(∂K ∩ e) denotes the trace restrictions of functions on that edge
segment such that u−(x) is the restriction from K and u+(x) is the restriction
from K ′ for x ∈ e. Using this compact notation, the Godunov finite volume
method and discontinuous Galerkin method for a single time slab increment
are written succinctly as

Godunov Finite Volume. Find u0 ∈ VB
0 such that for each K ∈ K

d

dt

∫

In

u0|K dt+
∫

In×∂K\Γ
h(n; (R0

pu0)−, (R0
pu0)+) ds dt+

∫

In×∂K∩Γ

h(n; (R0
pu0)−, g) ds dt = 0 (8)

Discontinuous Galerkin. Find up ∈ VB
p for all v ∈ VB

p (implied sum on i)

∑

K∈K

(

∫

In×K
v (up),t dx dt−

∫

In×K
v,xi f

i(up) dx dt+
∫

In×∂K\Γ
v− h(n; (up)−, (up)+) ds dt

+
∫

In×∂K∩Γ

v− h(n; (up)−, g) ds dt
)

= 0 (9)
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where h(n;u−, u+) is a numerical flux function such that ~f(u) · n = h(n;u, u)
and h(n;u−, u+) = −h(−n;u+, u−). In these formulations we have omitted
(for sake of simplicity) those terms that would arise from discontinuous in time
approximation since our final objective are error estimates at steady-state. Also
observe that Eqn. (9) is consistent with our abstract variational representation
given earlier for DG in Eqn. (4)

Find up ∈ VB
p such that

BDG(up, v) = F (v), ∀v ∈ VB
p . (10)

Close comparison of Eqns. (8) and (9) suggests the following lemma of impor-
tance in a posteriori error estimation for Godunov finite volume methods.

Lemma 2.1 Let R0
p denote a reconstruction operator R0

p : VB
0 7→ VB

p on a
nondeforming space-time partition K×In satisfying the cell-averaging condition
for u0 ∈ VB

0 and all K ∈ K

(R0
pu0, v)|K = (u0, v)|K , ∀v ∈ VB

0 (11)

where (·, ·)|K denotes an inner product integration on Ω restricted to a partition
element K. The Godunov finite volume method (8) is written equivalently as
the following Petrov-Galerkin variant of the discontinuous Galerkin method (9):

Find u0 ∈ VB
0

BDG(R0
pu0, v) = F (v), ∀v ∈ VB

0 . (12)

Proof The proof follows immediately from term-by-term inspection of Eqns.
(8) and (9) together with the cell-averaging condition (11).

Observe that the cell-averaging condition given here in Eqn. (11) is identical
to that given earlier in Eqn. (3).

3. A Posteriori Error Estimation of Functionals

Using lemma 2.1, an exact error representation formula and computable a
posteriori error estimates will be derived for user specified functionals tailored
to Godunov finite volume methods. The development given here follows closely
the previous work of Becker and Rannacher [BEC 98] and Süli [Sul 98] as well
as previous a posteriori error estimation work by the present authors [BAR 99,
BAR 99b] for the DG method.

3.1. Functionals

The objective is to estimate the error in a user specified functional M(u)
which can be expressed as a weighted integration over the domain Ω

Mψ(u) =
∫

Ω

ψN(u) dx
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or a weighted integration on the boundary Γ

Mψ(u) =
∫

Γ

ψN(u) dx

for some user specified ψ and function N(u) : R 7→ R. Examples of functionals
used in later calculations are:

Example 1: Outflow functional, u,t + λ · ∇u = 0

Mψ(u) =
∫

Γ

ψ (λ · n)+ u dx, x ∈ Rd . (13)

Example 2: Solution average functional

Mave(u) =
∫

Ω

u dx, x ∈ Rd . (14)

Example 3: Mollified pointwise functional

Mψ(u) =
∫

Ω

ψ(r0; |x− x0|)u dx, x ∈ R2 (15)

ψ(r0; r) =

{

0 r ≥ r0

e1/(r2/r20−1)

2π
∫ r0
0 e1/(ξ2/r20−1)ξ dξ

r < r0
.

3.2. Error Representation Formulas

In this section, exact error representation formulas are derived for three
abstract formulations with

(1) B(·, ·) a bilinear form with M(·) a linear functional

(2) B(·, ·) a nonlinear variational form (nonlinear in the first argument and
linear in the second argument) with M(·) a nonlinear functional

(3) B(R0
p·, ·) a nonlinear variational form (nonlinear in the first argument and

linear in the second argument) with M(·) a nonlinear functional

In these derivations, πp denotes any suitable projection operator (e.g. interpo-
lation, L2 projection) into VB

p .

Error Representation: linear case. B(·, ·) and M(·) are both assumed linear.

Consider the primal numerical problem

Find up ∈ VB
p such that

B(up, v) = F (v) ∀ v ∈ VB
p
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with the Galerkin orthogonality property

B(u− up, v) = 0 ∀ v ∈ VB
p

and introduce the auxiliary dual problem

Find Φ ∈ VB such that

B(v,Φ) = M(v) ∀ v ∈ VB .

An exact error representation formula for a given functional M(·) results from
the following steps

M(u)−M(up) = M(u− up) (linearity of M)

= B(u− up,Φ) (dual problem)

= B(u− up,Φ− πpΦ) (orthogonality)

= B(u,Φ− πpΦ)−B(up,Φ− πpΦ) (linearity of B)

= F (Φ− πpΦ)−B(up,Φ− πpΦ) (variational problem)

thus yielding the simple exact error representation formula

M(u)−M(up) = F (Φ− πpΦ)−B(up,Φ− πpΦ) . (16)

Error Representation: nonlinear case. B(·, ·) and M(·) are both nonlinear.

To cope with nonlinearity, we first introduce the mean-value linearizations

B(u, v) = B(up, v) + B(up, u;u− up, v) ∀ v ∈ VB

M(u) = M(up) +M(up, u;u− up) .

For example, if B(u, v) = (Lu, v) for some nonlinear differential operator L
then for v ∈ VB

B(u, v) = B(up, v) +
(

∫ 1

0

L,u(ũ(θ)) d θ (u− up), v
)

= B(up, v) + (L,u (u− up), v)
= B(up, v) + B(up, u;u− up, v).

with ũ(θ) ≡ up + (u− up) θ. Consider the nonlinear primal numerical problem

Find up ∈ VB
p such that

B(up, v) = F (v) ∀ v ∈ VB
p (17)

with the orthogonality property

B(up, u;u− up, v) = 0 ∀ v ∈ VB
p
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and introduce the auxiliary linearized dual problem

Find Φ ∈ VB such that

B(up, u; v,Φ) =M(up, u; v) ∀ v ∈ VB . (18)

An exact error representation formula for a given nonlinear functional M(·)
then results from the following steps

M(u)−M(up) =M(up, u;u− up) (mean-value M)

= B(up, u;u− up,Φ) (dual problem)

= B(up, u;u− up,Φ− πpΦ) (orthogonality)

= B(u,Φ− πpΦ)− B(up,Φ− πpΦ) (mean-value B)

= F (Φ− πpΦ)− B(up,Φ− πpΦ), (variational problem)

thus yielding the following exact error representation formula

M(u)−M(up) = F (Φ− πpΦ)− B(up,Φ− πpΦ) . (19)

Note that although Eqns. (16) and (19) appear identical, mean-value lineariza-
tion introduces a subtle right-hand side dependency on the exact solution in
Eqn. (19). This complication is addressed in Sect. 4.2.

Error Representation: Godunov FVM Case. B(R0
p·, ·) and M(·) are both non-

linear. Mean-value linearizations are again introduced as in the previous case

B(u, v) = B(R0
pu0, v) + B(Rp0u0, u;u−R0

pu0, v) ∀ v ∈ VB

M(u) = M(R0
pu0) +M(R0

pu0, u;u−R0
pu0) .

Consider the primal Godunov FVM problem

Find u0 ∈ VB
0 such that

B(R0
pu0, v) = F (v) ∀ v ∈ VB

0 (20)

with the orthogonality property

B(R0
pu0, u;u−R0

pu0, v) = 0 ∀ v ∈ VB
0

and introduce the auxiliary linearized dual problem

Find Φ ∈ VB such that

B(R0
pu0, u; v,Φ) =M(v) ∀ v ∈ VB. (21)
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An exact error representation formula for a given nonlinear functional M(·)
for the class of Godunov finite volume methods results from the following steps

M(u)−M(R0
pu0) =M(u−R0

pu0) (mean-value M)

= B(u−R0
pu0,Φ) (dual problem)

= B(u−R0
pu0,Φ− π0Φ) (orthogonality)

= B(u,Φ− π0Φ)− B(R0
pu0,Φ− π0Φ) (mean-value B)

= F (Φ− π0Φ)− B(R0
pu0,Φ− π0Φ), (variational problem)

thus yielding the following exact error representation formula

M(u)−M(R0
pu0) = F (Φ− π0Φ)− B(R0

pu0,Φ− π0Φ) . (22)

This final form for the Godunov finite volume method serves as a progenitor
for the remaining derivations given below.

4. Computable Error Estimates

Computationally, the error representation formulas (16), (19) and (22) are
not suitable for obtaining computable a posteriori error estimates and use in
mesh adaptation.

• Φ ∈ VB , the solution of the infinite dimensional problem is not generally
known.
• The mean-value linearization used in the linearized dual problems (18)

and (21) requires knowledge of the exact solution u.
• The error representation formulas do not suggest any simple strategy for

element refinement/coarsening.

4.1. Approximating Φ− π0Φ

We list several strategies for approximating Φ−π0Φ for Godunov finite vol-
ume methods. The first two techniques seek to exploit the two scale structure of
Godunov methods, i.e. that as a weighted residual method of Petrov-Galerkin
type, the residual is orthogonal to test functions in VB

0 and not to test functions
in VB

p .

Inherent two scale approximation. Compute the linearized dual problem:

Find Φ0 ∈ VB
0 such that

B(R0
pu0, u; v,R0

pΦ0) =M(R0
pu0, u; v), ∀ v ∈ VB

0

and approximate
Φ− π0Φ ≈ R0

pΦ0 − Φ0 . (23)
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Remark. — This strategy fails in standard Galerkin finite element methods
since any approximation of Φ ∈ VB

p is orthogonal to the residual, hence with
Galerkin finite element methods the contribution is identically zero and no er-
ror estimate is obtained.

Patch recovery post-processing. Compute the linearized dual problem:

Find Φ0 ∈ VB
0 such that

B(R0
pu0, u; v,R0

pΦ0) =M(R0
pu0, u; v), ∀ v ∈ VB

0

and approximate using a patch recovery technique R
p

q : VB
p 7→ VB

q for q ≥ p

Φ− π0Φ ≈ RpqR0
pΦ0 − Φ0 . (24)

The patch recovery is motivated by the original work of Zienkiewicz and Zhu
[ZIE 92]. In the present computations, the least squares reconstruction opera-
tor discussed in Section 6 is also used as a patch recovery operator so that

R
p

qR
0
pu0 = R0

qu0 . (25)

Global higher order solves. Solve the linearized dual problem global using a
higher order method:

Find Φ0 ∈ VB
0 such that

B(R0
pu0, u; v,R0

qΦ0) =M(R0
pu0, u; v), ∀ v ∈ VB

0

for some q > p. While conceptually straightforward, this technique typically
makes solving the linearized dual problem more computationally expensive than
the primal problem in terms of computer memory and arithmetic operations.
This can be prohibitive in three space dimensions.

4.2. Approximating the Mean-value Linearized Dual Problem

The mean-value linearization requires knowledge of the exact solution u.
Two computable approximate linearizations are considered

Jacobian derivative linearization. The mean-value linearization is supplanted
by the Jacobian linearization so that the computable linearized dual problem
for the Godunov method is obtained

Find Φ0 ∈ VB
0 such that

B(R0
pu0, R

0
pu0; v,Φ0) = M(R0

pu0, R
0
pu0; v) ∀ v ∈ VB.

This strategy is used in all subsequent numerical calculations.
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Mean-value linearization via post-processing and numerical quadrature. The Go-
dunov method provides easy access to post-processed approximations of the
solution, i.e. R

p

qR
0
pu0 as R0

qu0 for q > p, thus suggesting the improved com-
putable approximation of the mean-value linearized dual problem

Find Φ0 ∈ VB
0 such that for q > p

B(R0
pu0, R

0
qu0; v,Φ0) = M(R0

pu0, R
0
qu0; v) ∀ v ∈ VB.

where numerical quadrature could be employed to approximate the mean-value
path integration.

4.3. Direct Estimates

Given the error representation formula (22) for the Godunov finite volume
method, error estimates suitable for adaptive meshing are easily obtained

|M(u)−M(R0
pu0)

∣

∣ =
∣

∣B(R0
pu0,Φ− π0Φ)− F (Φ− π0Φ)

∣

∣ (error representation)

= |
∑

K∈K

(

BK(R0
pu0,Φ− π0Φ)− FK(Φ− π0Φ)

)

| (element assembly)

≤
∑

K∈K

∣

∣

(

BK(R0
pu0,Φ− π0Φ)− FK(Φ− π0Φ)

)∣

∣ (triangle inequality)

(26)

where BK(·, ·) and FK(·) are restrictions of B(·, ·) and F (·) to the partition
element K.

Note that the element assembly representation is not unique. For example
strong and weak forms of the variational operator B(·, ·) yield differing assem-
bly representations. For the Godunov finite volume method with time terms
omitted, the error representation formula (22) yields

B(R0
pu0,Φ− π0Φ)− F (Φ− π0Φ) =

∑

K∈K

(

−
∫

K

~f i(R0
pu0) (Φ− π0Φ),xi dx

+
∫

∂K\Γ
(Φ− π0Φ)− h(n; (R0

pu0)−, (R0
pu0)+) ds

+
∫

∂K∩Γ

(Φ− π0Φ)− h(n; (R0
pu0)−, g) ds

)

. (27)

The present numerical computations utilize the numerical flux formula

h(n;u−, u+) =
1
2

(f(n;u−) + f(n;u+))− 1
2
|a(n;u(u−, u+))| [u]+− (28)

with u(u−, u+) chosen so that

[f(n;u)]+− = a(n;u(u−, u+)) [u]+− (29)
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with f(n;u) = (~f(u−) · n) and a(n;u) = ∂f(n;u)/∂u. Using this particular
numerical flux, the following weighted residual (strong) form can be obtained
upon integration by parts

B(R0
pu0,Φ− π0Φ) − F (Φ− π0Φ) =

∑

K∈K

(

∫

K

(Φ− π0Φ) div ~f(R0
pu0) dx

+
∫

∂K\Γ
(Φ− π0Φ)− a−(n; (R0

pu0)−, (R0
pu0)+) [R0

pu0]+− ds

+
∫

∂K∩Γ

(Φ− π0Φ)− a−(n; (R0
pu0)−, g) (g − (R0

pu0)−) ds
)

. (30)

This latter weighted residual form and the implied element assembly form
∑

K BK(·, ·) − FK(·) is preferred in the error estimates (26) since the indi-
vidual terms represent residual components that vanish individually when the
exact solution is inserted into the variational form and a slightly sharper ap-
proximation is obtained after application of the triangle inequality in (26).

5. Adaptive Meshing

The error estimates of the previous section motivate a simple strategy for
mesh adaptation. Defining for each partition element K

ηK ≡ BK(R0
pu0,Φ− π0Φ)− FK(Φ− π0Φ) (31)

we have a candidate adaptation element indicator |ηK | such that

∣

∣M(u)−M(R0
pu0)

∣

∣ ≤
∑

K∈K

|ηK | (32)

and an accurate adaptation stopping criteria
∣

∣M(u)−M(R0
pu0)

∣

∣ = |
∑

K∈K

ηK | . (33)

These quantities suggest a simple mesh adaptation strategy in common use
with other indicator functions:

Mesh Adaptation Algorithm

(1) Construct an initial mesh K.

(2) Compute a numerical approximation of the primal problem on the current
mesh K using Godunov’s method with p-th order reconstruction yielding R0

pu0.

(3) Compute a numerical approximation of the dual problem on the current
mesh K using Godunov’s method with p-th order reconstruction yielding R0

pΦ0.

(4) Optionally improve the accuracy of the numerically computed dual problem
via a post-processing recovery operator R

p

q for q ≥ p yielding R
p

qR
0
pΦ0.
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(5) Compute ηK for all elements in K using R0
pu0 and the approximation

Φ− π0Φ ≈ R0
pΦ0 − Φ0 or Φ− π0Φ ≈ RpqR0

pΦ0 − Φ0 .

(6) If( |
∑

K∈K ηK | < TOL) STOP

(7) Otherwise, refine and coarsen a user specified fraction of the total number
of elements according to the size of |η|K , generate a new mesh K and GOTO 2

6. Least Squares Reconstruction on Patches

The reconstruction operator used in calculations is based on a least squares
approximation given cell-averages on patches of elements. Let N (K) ⊂ Ω
denote a patch of elements containing the element K. The global reconstruction
operator R0

p : VB
0 → VB

p is constructed piecewise on a local patch-by-patch basis
with

(R0
p,N (K)u0)|K = (R0

pu0)|K , ∀K ∈ K

for u0 ∈ VB
0 so that the task reduces to that of finding the local patch re-

construction operator R0
p,N (K) for each K ∈ K. To do so, first define the L2

projection Π0 : VB 7→ VB
0 , i.e. for each u ∈ VB

(u−Π0u, v) = 0, ∀v ∈ VB
0 .

The local reconstruction operator R0
p,N (K) is then constructed from the follow-

ing two conditions

1) Exact Π0 projection in element K. The Π0,K projection of
R0
p,N (K)u0 is exact in element K, i.e., it holds that

Π0,KR
0
p,N (K)u0 = u0,K for each u0 ∈ VB

0 . (34)

where Π0,K and u0,K denote restrictions of Π0 and u0 to the element K. This
condition is equivalent to the cell-averaging property given in Eqn. (3).

2) Constrained least squares fitting on patch N (K). The L2 deviation
of the Π0,K′ projection of R0

p,N (K)u0 from given cell-averaged data in patch
elements K ′ ∈ N (K) is minimized subject to the constraint (34)

‖u0 −Π0R
0
p,N (K) u0‖N (K) = min

w∈Qp(N (K))
‖u0 −Π0w‖N (K), (35)

for all u0 ∈ VB
0 . Here Qp(N (K)) is the subspace of polynomials in Pp(N (K))

such that (34) holds.
Remark. — [p-th Order Exactness] Note that the patch cardinality card(N (K))
is always chosen sufficiently large (e.g. by increasing graph distance) so that
there exists a unique solution to the constrained least squares problem and the
local reconstruction operator R0

p,N (K) is fully determined. As a consequence,
it follows that for r ≤ p

R0
p,N (K) Π0ur = ur ∀ur ∈ Pr(N (K)),
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which simply asserts that if the given data ur is in the space of polynomials of
degree r ≤ p in the patch neighborhood N (K), then the elementwise projection
to cell-averages followed by p-th order patch reconstruction exactly reproduces
the given data.

7. Slope Limiting for Discontinuous Solutions

For solutions containing discontinuities such as the Burgers’ equation ex-
ample of Sect. 8, a slope limiter is employed so that non-oscillatory solutions
are obtained. The following particular solution ansatz for each K ∈ K

U(x)K ≡ u0,K + ΨK · (R0
p(x)u0 − u0)K , x ∈ Rd (36)

is chosen with ΨK ∈ [0, 1] so that the cell-average property of the reconstruction
(34) is maintained regardless of the particular value of ΨK . Next for each
K ∈ K compute the minimum and maximum of all adjacent neighbor cell-
averages

umin
K = min

K′∈N (K)
u0,K′ , umax

K = max
K′∈N (K)

u0,K′

and determine the largest value of ΨK ∈ [0, 1] such that

umin
K ≤ U(x)K ≤ umax

K

when evaluated at the quadrature points used in the flux integral computation.
To achieve this, compute the extrapolated state U(xq) at each quadrature point
location xq in the flux integral and determine the most restrictive ΨK

ΨK =











min(1, u
max
K −u0,K

U(xq)−u0,K
), if U(xq)− u0,K > 0

min(1, u
min
K −u0,K

U(xq)−u0,K
), if U(xq)− u0,K < 0

1 if U(xq)− u0,K = 0

(37)

across all quadrature points. Unfortunately, the convergence of nonlinear iter-
ative methods can be erratic using this type of non-differentiable limiter. Con-
sequently, an additional quadratic dissipation term is added to the numerical
flux function for discontinuous solution problems to enhance the convergence
of nonlinear iterative methods

hmod(n, ε; (R0
pu0)−, (R0

pu0)+) = h(n; (R0
pu0)−, (R0

pu0)+)

+ ε sup
Ω
|~f ′|

(

[R0
pu0]+−

[u0]+−

)2

[u0]+− (38)

with ε = .01 used in the Burgers’ equation calculations given below.

8. Numerical Results

To validate and assess the a posteriori error estimation theory for the Go-
dunov finite volume method, numerical solutions for linear advection and non-
linear Burgers’ equation are computed.
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Linear Advection. u(x, y) : [0, 1]2 7→ R with λ = (−y, x)T .

div(λu) = 0, in [0, 1]2

u(x, 0) = g(x),
u(1, y) = 0,

with inflow profile data

g(x) =

{

˜ψ(9/20; |x− 1/2|) · (1− ˜ψ(9/20; |x− 1/20|)) if x ≤ 1/2
˜ψ(9/20; |x− 1/2|) · (1− ˜ψ(9/20; |x− 19/20|)) if x > 1/2

where ˜ψ(r;x) ≡ ψ(r;x)/ψ(r; 0) and ψ(r;x) the mollifier function defined in
Eqn. 15. Figure 1 (left) shows isocontours of the primal numerical solution
obtained using the Godunov method with linear reconstruction on a relatively
fine mesh containing 6400 elements. Figure 1 (right) graphs global measures

0.01 0.1
h

1e-05

0.0001

0.001

0.01

0.1

1

G
lo

ba
l E

rr
or

||u0-u||L2

||R0
1 u0-u||L2

||R2
1R0

1 u0-u||L2
 (Post-processed)

|R0
1 u0-u|H1

|R2
1
R

0
1 u0-u|H1

 (Post-processed)

Figure 1. Circular advection problem. Isocontours of the primal numerical
solution R0

1u0 computed using the Godunov FVM method with linear recon-
struction on a mesh containing 6400 elements (left) and global measures of
solution error versus mesh spacing parameter h (right).

of the solution error on meshes containing 400, 1600, 6400 and 25600 elements.
The graphs show that the L2 solution error in cell-averages ‖u0 − u‖L2 as well
as the H1 semi-norm of the linearly reconstructed solution |R0

1u0 − u|H1 are
both first order accurate as expected while the L2 solution error in the linearly
reconstructed solution ‖R0

1u0 − u‖L2 exceeds second order accuracy. Also in-
cluded in these graphs is the effect of solution post-processing. Specifically, the
quadratic post-processing recovery procedure R

1

2R
0
1u0 = R0

2u0 was employed.
Although the L2 norm ‖R0

2u0 − u‖L2 shows no improvement in convergence
rate (slope), a slight vertical shift in the graph of this data indicates a slight
improvement in absolute accuracy that is somewhat obfuscated by the logarith-
mic scaling. More conspicuous is the improvement in the H1 semi-norm. The
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effect of post-processing is to increase the convergence rate of |R0
2u0 − u|H1 to

second order. This indicates significant improvement in the accuracy of deriva-
tive information through least squares post-processing. This improvement is
visually seen in Fig. 2 which shows isocontours of the numerical solution ob-
tained on the coarsest mesh and the effect of quadratic post-processing. Next,

Figure 2. Isocontours of the coarsest mesh (400 elements) numerical solution
R0

1u0 obtained using the Godunov FVM with linear reconstruction (left) and
isocontours of the post-processed solution R

1

2R
0
1u0 = R0

2u0 (right).

the a posteriori error estimates are evaluated. Specifically considered are

• The outflow functional Eqn. (13) with

ψoutflow(x, y) =

{

˜ψ(7/20; |y − 3/5|) · (1− ˜ψ(7/20; |y − 1/4|)) if y ≤ 3/5
˜ψ(7/20; |y − 3/5|) · (1− ˜ψ(7/20; |y − 19/20|)) if y > 3/5

.

• The solution average functional Eqn. (14).
• The mollified pointwise value functional Eqn. (15) with

ψmollified(x, y) = ˜ψ(1/20;
√

(x− 1/10)2 + (y − 3/5)2) .

Dual solutions and error estimates are shown in Figs. 3-5. Each of these fig-
ures shows isocontours for the numerical solution of the dual problem (left) and
graphs of the functional error and the a posteriori error estimates (right). The
graphs in Figs. 3-5 each contain five curves. The first curve depicts the exact
functional error |∆M | since the analytic primal solution is known. Observe the
third order superconvergence in the outflow functional and the mollified point-
wise value functional. For each functional the continuous dual solution Φ can be
constructed either exactly via Green’s function or to a specified accuracy using
series expansion and/or adaptive quadrature. Using this Φ, the second curve



. 19

0.0100 0.1000
h

10-6

10-5

10-4

10-3

10-2

10-1

100

Fu
nc

tio
na

l E
rr

or

|∆M|
|B(R1

0 u0, Φ−Φ0) - F(Φ−Φ0)|

|B(R1
0 u0, R1

0Φ0−Φ0) - F(R1
0Φ0−Φ0)|

|B(R1
0 u0, R2

1R1
0Φ0−Φ0) - F(R2

1R1
0Φ0−Φ0)|

ΣK |BK(R1
0 u0, R2

1R1
0Φ0−Φ0) - FK(R2

1R1
0Φ0−Φ0)|

Figure 3. Outflow functional for the pure advection problem using the Godunov
FVM with linear reconstruction. Isocontours of the dual problem solution (left)
and functional error versus mesh parameter h (right).
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Figure 4. Integral solution average functional for the pure advection problem
using the Godunov FVM with linear reconstruction. Isocontours of the dual
problem solution (left) and functional error versus mesh parameter h (right).

depicts |B(R0
1u0,Φ−π0Φ)−F (Φ−π0Φ)| which according to (22) should be iden-

tical to the first curve |∆M |. This is verified for each functional. Curve number
three graphs |B(R0

1u0, R
0
1Φ0−Φ0)−F (R0

1Φ0−Φ0)| so that the effect of numer-
ically approximating the continuous dual problem is assessed. Some noticable
error is observed on coarse meshes but the performance on the finest meshes
is quite acceptable. Curve number four shows the effect of post-processing of
the numerically obtained dual data |B(R0

1u0, R
0
2Φ0 − Φ0) − F (R0

2Φ0 − Φ0)|.
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Using this post-processed dual data, good accuracy is obtained on all meshes
for all functionals except perhaps the mollified pointwise value functional. In
this latter case, the dual solution consists of a slightly smoothed ridge func-
tion that is not well-resolved on the coarsest meshes using linear or quadratic
approximations. Even so, the estimates in curves three or four seem ac-
ceptable as an adaptive mesh stopping criteria. Curve number five graphs

0.010 0.100
h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fu
nc

tio
na

l E
rr

or

|∆M|

|B(R1
0 u0, Φ−Φ0) - F(Φ−Φ0)|

|B(R1
0 u0, R1

0Φ0−Φ0) - F(R1
0Φ0−Φ0)|

|B(R1
0 u0, R2

1R1
0Φ0−Φ0) - F(R2

1R1
0Φ0−Φ0)|

ΣK |BK(R1
0 u0, R2

1R1
0Φ0−Φ0) - FK(R2

1R1
0Φ0−Φ0)|

Figure 5. Mollified pointwise value functional for the pure advection problem
using the Godunov FVM with linear reconstruction. Isocontours of the dual
problem solution (left) and functional error versus mesh parameter h (right).

Adaptation
Levels #cells |∆M |

0 400 1.9E-3

1 602 9.4E-4

2 1232 1.7E-5

3 3418 5.8E-8

Figure 6. Adapted mesh for mollified pointwise value functional (left) and tab-
ulated mesh sizes for increasing levels of refinement (right).

∑

K∈K |BK(R0
1u0, R

0
2Φ0 − Φ0) − FK(R0

2Φ0 − Φ0)| for each functional. In this
approximation, interelement error cancellation does not occur because of the
application of the triangle inequality in Eqn. (26). Consequently, the third
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order superconvergence rates seen in the outflow and mollified functionals is
absent and only second order rates of convergence are observed for all func-
tionals. In addition, this last estimate over predicts the true error by factors
of 3-1000 depending of the functional and the mesh size. Finally, in Fig. 6
(left) an adapted mesh obtained for the mollified pointwise value functional
is plotted. The mesh has been adapted using the algorithm of Sect. 5 with
quadratically post-processed numerical dual data. Figure 6 (right) indicates
the efficiency of the adaptation procedure by tabulating levels of adaptation,
mesh sizes, and the functional error for each level of adaptation.

Burgers’ Equation. u(x, y) : [0, 1]2 7→ R with λ = (u/2, 1)T .

div(λu) = 0, in [0, 1]2

u(x, 0) = 5/4− 2x,
u(1, y) = −3/4,
u(0, y) = 5/4 .

As a final example, Burgers’ equation is solved in a unit square as shown in

Figure 7. Primal numerical solution R0
1u0 for Burgers’ equation problem using

the Godunov FVM with linear reconstruction. Carpet plot in 3D (left) and
solution isocontours in 2D (right).

Fig. 7. As mentioned earlier, the Jacobian linearization is used as an approx-
imation of the mean-value linearization for the dual problem. Unfortunately,
the limiter function ΨK in Eqn. (36) is highly non-differentiable and has not
been linearized in the present computations. For this problem, error estimates
for the solution average functional Eqn. (14) have been obtained. Isocontours
of the dual solution are shown in Fig. 8 (left). It is observed that monotonicity
of the primal shock profile is essential for obtaining meaningful numerical ap-
proximations of the dual problem. Figure 8 (right) graphs the functional error
using various approximations. The first curve graphs the exact functional error
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Figure 8. Integral solution average functional for Burgers’ equation problem.
Isocontours of the dual problem (left) and functional error versus mesh spacing
parameter h (right).

|∆M |. Observe that this functional converges at a first order rate presumably
due to the first order accuracy of the primal scheme in the shock region. The
second curve graphs |B(R0

1u0,Φ−π0Φ)−F (Φ−π0Φ)| but using an analytical Φ
linearized about the exact solution. Consequently, this quantity only approx-
imates |∆M | and large differences are seen on the coarsest mesh. The third
curve graphs |B(R0

1u0, R
0
1Φ0−Φ0)−F (R0

1Φ0−Φ0)| using a numerically approx-
imated dual problem. Again large discrepancies are seen on the coarsest mesh.
With mesh refinement the accuracy quickly becomes acceptable. Note we have
not included post-processing of the dual data in these calculations. The fourth
curve graphs

∑

K∈K |BK(R0
1u0, R

0
1Φ0 − Φ0) − FK(R0

1Φ0 − Φ0)|. The results
show that this estimate over predicts the true error by an order of magnitude
but show the same rate of convergence as the true error.

These results give some evidence that the numerical approximations intro-
duced due to nonlinearity become small under modest mesh refinement. Im-
proved approximations for nonlinear problems are currently being pursued by
the first author in related work applicable to both the discontinuous Galerkin
and finite volume methods.

9. Concluding Remarks

A simple a posteriori error estimation theory for user specified functionals
has been constructed that is tailored for higher order Godunov finite volume
methods. Many issues remain unresolved:
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• Mean-value linearization for schemes with non-differentiable limiters
and/or reconstruction algorithms.
• Approximation of the infinite dimensional dual problem.
• Improved post-processing strategies.

Even so, the results presented here verify the abstract theory and suggest
that further investigation is warranted.
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